A New 6,7-Seco-*Ent*-Kaurane Diterpenoid from *Isodon eriocalyx* Var. *laxiflora*

Xue Mei NIU, Sheng Hong LI, Shuang Xi MEI, Zhong Wen LIN, Han Dong SUN*

Laboratory of Phytochmistry, Kunming Institute of Botany, Academia Sinica, Kunming 650204

Abstract: A new 6,7-seco-*ent*-kaurane diterpenoid, together with two known ones, was isolated from the leaves of *Isodon eriocalyx* var. *laxiflora* C. Y. Wu & H. W. Li. Their structures were established by spectroscopic methods.

Keywords: Isodon eriocalyx var. laxiflora, 6,7-seco-ent-kaurane diterpenoid, laxiflorin E.

Isodon eriocalyx var. laxiflora C. Y. Wu & H. W. Li, is a perennial herb naturally growing in the southern area of Yunnan province. In our continuing studies¹ on its leaves collected from Xishuanbana prefecture, a new 6,7-seco-ent-kaurane diterpenoid, named laxiflorin E (1), together with two known 6,7-seco-ent-kaurane diterpenoids², eriocalyxin A (2) and laxiflorin C (3), was isolated. Their structures were established by spectroscopic analysis.

Compound **1**, obtained as colorless rhombus crystal (from Me₂CO), mp: $214.0 - 216.5^{\circ}$ C, $[\alpha]_{D}^{15.3} + 121.18$ (c=0.85, CH₃OH), showed a molecular formula peak at m/z 346 for C₂₀H₂₆O₅ in the EIMS spectrum, which was confirmed by HREIMS (found 346.1750, calc. 346.1780). The analysis of 1 H and 13 C NMR (DEPT) data revealed that compound **1** closely resembled compound **2** except for Aring. The methine carbon signal at δ_{C} 199.82 assigned to CHO group in **2** was replaced by an oxy-methylene carbon signal at δ_{C} 58.3 arising from CH₂OH group in **1**. In the 1 H NMR spectrum³, the doublet signal at δ_{H} 9.90 in **2** was substituted by the proton signal at δ_{H} 4.29 (2H, brs) in **1**. Therefore, compound **1** was identified as 16(S)-methyl-6-hydroxyl-1, 15-dioxo-6,7-seco-*ent*-kaur-2-en-7, 20-olide (**Figure 1**), named laxiflorin E.

Figure 1 The structures of 1-3

^{*} E-mail: hdsun@mail.kib.ac.cn

Table 1	The	¹³ C NMR	data	of 1	-3 (125	MHz.	δin	ppm,	C_5D_5	₅ N)

Carbon	1	2*	3
1	200.9 (s)	197.1 (s)	200.9 (s)
2	124.6 (d)	125.1 (d)	124.5 (d)
3	158.9 (d)	156.4 (d)	158.9 (d)
4	36.8 (s)	36.1 (s)	36.7 (s)
5	47.6 (d)	57.5 (d)	47.6 (d)
6	58.3 (t)	199.8 (d)	58.3 (t)
7	170.4 (s)	168.9 (s)	170.4 (s)
8	60.0 (s)	59.1 (s)	60.0 (s)
9	41.9 (d)	42.6 (d)	41.9 (d)
10	52.7 (s)	49.9 (s)	52.3 (s)
11	18.6 (t)	17.8 (t)	20.3 (t)
12	30.6 (t)	29.6 (t)	18.1 (t)
13	36.0 (d)	35.3 (d)	32.7 (d)
14	30.1 (t)	29.4 (t)	32.8 (t)
15	217.1 (s)	216.0 (s)	217.4 (s)
16	51.3 (d)	51.0 (d)	48.8 (d)
17	16.9 (q)	16.7 (q)	11.8 (q)
18	31.9 (q)	31.5 (q)	31.8 (q)
19	23.8 (q)	24.3 (q)	23.8 (q)
20	70.8 (t)	68.5 (t)	70.8 (t)

^{*}The data were measured in CDCl₃ with reference to the signal of CDCl₃

Acknowledgment

The authors wish to thank all members of the analytical group of Phytochemistry Laboratory of Kunming Institute of Botany, Academic Sinica, for the measurement of spectral data.

References and notes

- H. D. Sun, Z. W. Lin, F. D. Niu, P. Q, Shen, L. T. Pan, L. Z, Lin and G. A. Coedell, *Phytochemistry*, 1995, 38, 1451.
- 2. J. Wang, Z. W. Lin, H. D. Sun, Chinese Chemical Letters, 1997, 8, 421.
- 3. The 1 H NMR data of 1 (C₅D₅N, 500 MHz, δ in ppm, J in Hz): 5.90 (d, 1H, J=10.2 Hz, H-2), 6.48 (d, 1H, J=10.2 Hz, H-3), 2.25 (brs, 1H, H-5), 4.29 (brs, 2H, H-6), 2.91 (dd, 1H, J=4.3, 3.0 Hz, H-9), 1.80 (m, 1H, H-11a), 1.64 (m, 1H, H-11b), 2.02 (m, 1H, H-12a), 1.29 (m, 1H, H-12b), 1.99 (brs, 1H, H-13), 2.81 (m, 2H, H-14), 2.08 (brd, 1H, J=7.6 Hz, H-16), 1.06 (d, 3H, J=7.6 Hz, H-17), 1.17 (s, 3H, H-18), 1.22 (s, 3H, H-19), 5.27 (d, 1H, J=11.1 Hz, H-20a), 4.82 (d, 1H, J=11.1 Hz, H-20b).

Received 27 February, 2001